Ultrafast dynamics in C 1s core-excited CF4 revealed by two-dimensional resonant Auger spectroscopy.

نویسندگان

  • M N Piancastelli
  • R Guillemin
  • M Simon
  • H Iwayama
  • E Shigemasa
چکیده

Following core excitation in an isolated molecule, ultrafast dissociation of one particular chemical bond can occur, where "ultrafast" is defined as taking place during the lifetime of the core hole, of the order of few femtoseconds. The signature of such phenomenon can be observed in resonant Auger spectra following core excitation. We present here an investigation of ultrafast dissociation following C 1s-to-σ* core excitation in CF4, with high-resolution resonant Auger spectroscopy. We are able to characterize final states of both the molecular ion and the CF3 (+) fragment. We use two-dimensional (2D) maps to record resonant Auger spectra across the resonance as a function of photon energy and to characterize ultrafast dynamics. This method provides immediate visual evidence of one of the important characteristics of the study of spectral features related to molecular versus fragment ionic final states, and namely their dispersion law. In the 2D maps we are also able to identify the dissociation limit for one of the molecular final states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Auger decay calculations with core-hole excited-state molecular-dynamics simulations of water.

We report a new theoretical procedure for calculating Auger decay transition rates including effects of core-hole excited-state dynamics. Our procedure was applied to the normal and first resonant Auger processes of gas-phase water and compared to high-resolution experiments. In the normal Auger decay, calculated Auger spectra were found to be insensitive to the dynamics, while the repulsive ch...

متن کامل

Probing interactions between core-electron transitions by ultrafast two-dimensional x-ray coherent correlation spectroscopy.

Two-dimensional x-ray correlation spectra (2DXCS) obtained by varying two delay periods in a time-resolved coherent all-x-ray four-wave-mixing measurement are simulated for the N 1s and O 1s transitions of aminophenol. The necessary valence and core-excited states are calculated using singly and doubly substituted Kohn-Sham determinants within the equivalent-core approximation. Sum-over-states ...

متن کامل

Photoinduced molecular chirality probed by ultrafast resonant X-ray spectroscopy

Recently developed circularly polarized X-ray light sources can probe the ultrafast chiral electronic and nuclear dynamics through spatially localized resonant core transitions. We present simulations of time-resolved circular dichroism signals given by the difference of left and right circularly polarized X-ray probe transmission following an excitation by a circularly polarized optical pump w...

متن کامل

Intramolecular electron scattering and electron transfer following autoionization in dissociating molecules.

Resonant Auger decay of core-excited molecules during ultrafast dissociation leads to a Doppler shift of the emitted electrons depending on the direction of the electron emission relative to the dissociation axis. We have investigated this process by angle-resolved electron-fragment ion coincidence spectroscopy. Electron energy spectra for selected emission angles for the electron relative to t...

متن کامل

The effect of thermal annealing on the charge transfer dynamics of a donor-acceptor copolymer and fullerene: F8T2 and F8T2:PCBM.

Ultrafast charge delocalization dynamics in an internal donor-acceptor copolymer poly(9,9-dioctylfluorenyl-co-bithiophene) (F8T2) and its blend with the fullerene derivative [6,6]-phenyl C61 butyric acid methyl ester (PCBM) was studied by resonant Auger spectroscopy measured around sulfur K-edge using the core-hole clock approach. The effect of thermal annealing on the charge transfer delocaliz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 138 23  شماره 

صفحات  -

تاریخ انتشار 2013